Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

TcNPR3 from Theobroma cacao functions as a repressor of the pathogen defense response.

Identifieur interne : 001209 ( Main/Exploration ); précédent : 001208; suivant : 001210

TcNPR3 from Theobroma cacao functions as a repressor of the pathogen defense response.

Auteurs : Zi Shi ; Yufan Zhang ; Siela N. Maximova ; Mark J. Guiltinan [États-Unis]

Source :

RBID : pubmed:24314063

Descripteurs français

English descriptors

Abstract

BACKGROUND

Arabidopsis thaliana (Arabidopsis) NON-EXPRESSOR OF PR1 (NPR1) is a transcription coactivator that plays a central role in regulating the transcriptional response to plant pathogens. Developing flowers of homozygous npr3 mutants are dramatically more resistant to infection by the pathogenic bacterium Pseudomonas syringae, suggesting a role of NPR3 as a repressor of NPR1-mediated defense response with a novel role in flower development.

RESULTS

We report here the characterization of a putative NPR3 gene from the tropical tree species Theobroma cacao (TcNPR3). Like in Arabidopsis, TcNPR3 was constitutively expressed across a wide range of tissue types and developmental stages but with some differences in relative levels compared to Arabidopsis. To test the function of TcNPR3, we performed transgenic complementation analysis by introducing a constitutively expressing putative TcNPR3 transgene into an Arabidopsis npr3 mutant. TcNPR3 expressing Arabidopsis plants were partially restored to the WT pathogen phenotype (immature flowers susceptible to bacterial infection). To test TcNPR3 function directly in cacao tissues, a synthetic microRNA targeting TcNPR3 mRNA was transiently expressed in cacao leaves using an Agrobacterium-infiltration method. TcNPR3 knock down leaf tissues were dramatically more resistance to infection with Phytophthora capsici in a leaf bioassay, showing smaller lesion sizes and reduced pathogen replication.

CONCLUSIONS

We conclude that TcNPR3 functions similar to the Arabidopsis NPR3 gene in the regulation of the cacao defense response. Since TcNPR3 did not show a perfect complementation of the Arabidopsis NPR3 mutation, the possibility remains that other functions of TcNPR3 remain to be found. This novel knowledge can contribute to the breeding of resistant cacao varieties against pathogens through molecular markers based approaches or biotechnological strategies.


DOI: 10.1186/1471-2229-13-204
PubMed: 24314063
PubMed Central: PMC3878973


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">TcNPR3 from Theobroma cacao functions as a repressor of the pathogen defense response.</title>
<author>
<name sortKey="Shi, Zi" sort="Shi, Zi" uniqKey="Shi Z" first="Zi" last="Shi">Zi Shi</name>
</author>
<author>
<name sortKey="Zhang, Yufan" sort="Zhang, Yufan" uniqKey="Zhang Y" first="Yufan" last="Zhang">Yufan Zhang</name>
</author>
<author>
<name sortKey="Maximova, Siela N" sort="Maximova, Siela N" uniqKey="Maximova S" first="Siela N" last="Maximova">Siela N. Maximova</name>
</author>
<author>
<name sortKey="Guiltinan, Mark J" sort="Guiltinan, Mark J" uniqKey="Guiltinan M" first="Mark J" last="Guiltinan">Mark J. Guiltinan</name>
<affiliation wicri:level="4">
<nlm:affiliation>The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA. mjg9@psu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">University Park (Pennsylvanie)</settlement>
</placeName>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:24314063</idno>
<idno type="pmid">24314063</idno>
<idno type="doi">10.1186/1471-2229-13-204</idno>
<idno type="pmc">PMC3878973</idno>
<idno type="wicri:Area/Main/Corpus">001173</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001173</idno>
<idno type="wicri:Area/Main/Curation">001173</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001173</idno>
<idno type="wicri:Area/Main/Exploration">001173</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">TcNPR3 from Theobroma cacao functions as a repressor of the pathogen defense response.</title>
<author>
<name sortKey="Shi, Zi" sort="Shi, Zi" uniqKey="Shi Z" first="Zi" last="Shi">Zi Shi</name>
</author>
<author>
<name sortKey="Zhang, Yufan" sort="Zhang, Yufan" uniqKey="Zhang Y" first="Yufan" last="Zhang">Yufan Zhang</name>
</author>
<author>
<name sortKey="Maximova, Siela N" sort="Maximova, Siela N" uniqKey="Maximova S" first="Siela N" last="Maximova">Siela N. Maximova</name>
</author>
<author>
<name sortKey="Guiltinan, Mark J" sort="Guiltinan, Mark J" uniqKey="Guiltinan M" first="Mark J" last="Guiltinan">Mark J. Guiltinan</name>
<affiliation wicri:level="4">
<nlm:affiliation>The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA. mjg9@psu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">University Park (Pennsylvanie)</settlement>
</placeName>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis Proteins (chemistry)</term>
<term>Biological Assay (MeSH)</term>
<term>Cacao (genetics)</term>
<term>Cacao (immunology)</term>
<term>Cacao (microbiology)</term>
<term>Disease Resistance (genetics)</term>
<term>Disease Resistance (immunology)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Gene Knockdown Techniques (MeSH)</term>
<term>Genes, Plant (genetics)</term>
<term>Genetic Complementation Test (MeSH)</term>
<term>Host-Pathogen Interactions (immunology)</term>
<term>MicroRNAs (genetics)</term>
<term>MicroRNAs (metabolism)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mutation (genetics)</term>
<term>Organ Specificity (genetics)</term>
<term>Plant Diseases (genetics)</term>
<term>Plant Diseases (immunology)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Leaves (immunology)</term>
<term>Plant Proteins (chemistry)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Pseudomonas syringae (immunology)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Transformation, Genetic (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Arabidopsis (génétique)</term>
<term>Cacaoyer (génétique)</term>
<term>Cacaoyer (immunologie)</term>
<term>Cacaoyer (microbiologie)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Dosage biologique (MeSH)</term>
<term>Feuilles de plante (génétique)</term>
<term>Feuilles de plante (immunologie)</term>
<term>Gènes de plante (génétique)</term>
<term>Interactions hôte-pathogène (immunologie)</term>
<term>Maladies des plantes (génétique)</term>
<term>Maladies des plantes (immunologie)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Mutation (génétique)</term>
<term>Protéines d'Arabidopsis (composition chimique)</term>
<term>Protéines végétales (composition chimique)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Pseudomonas syringae (immunologie)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Résistance à la maladie (génétique)</term>
<term>Résistance à la maladie (immunologie)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Spécificité d'organe (génétique)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Techniques de knock-down de gènes (MeSH)</term>
<term>Test de complémentation (MeSH)</term>
<term>Transformation génétique (MeSH)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
<term>microARN (génétique)</term>
<term>microARN (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Protéines d'Arabidopsis</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Cacao</term>
<term>Disease Resistance</term>
<term>Genes, Plant</term>
<term>MicroRNAs</term>
<term>Mutation</term>
<term>Organ Specificity</term>
<term>Plant Diseases</term>
<term>Plant Leaves</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Cacaoyer</term>
<term>Feuilles de plante</term>
<term>Gènes de plante</term>
<term>Maladies des plantes</term>
<term>Mutation</term>
<term>Protéines végétales</term>
<term>Résistance à la maladie</term>
<term>Spécificité d'organe</term>
<term>microARN</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Cacaoyer</term>
<term>Feuilles de plante</term>
<term>Interactions hôte-pathogène</term>
<term>Maladies des plantes</term>
<term>Pseudomonas syringae</term>
<term>Résistance à la maladie</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Cacao</term>
<term>Disease Resistance</term>
<term>Host-Pathogen Interactions</term>
<term>Plant Diseases</term>
<term>Plant Leaves</term>
<term>Pseudomonas syringae</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>MicroRNAs</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Cacaoyer</term>
<term>Maladies des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Cacao</term>
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protéines végétales</term>
<term>microARN</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Biological Assay</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Plant</term>
<term>Gene Knockdown Techniques</term>
<term>Genetic Complementation Test</term>
<term>Molecular Sequence Data</term>
<term>Plants, Genetically Modified</term>
<term>Sequence Homology, Amino Acid</term>
<term>Transformation, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Données de séquences moléculaires</term>
<term>Dosage biologique</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Séquence d'acides aminés</term>
<term>Techniques de knock-down de gènes</term>
<term>Test de complémentation</term>
<term>Transformation génétique</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Arabidopsis thaliana (Arabidopsis) NON-EXPRESSOR OF PR1 (NPR1) is a transcription coactivator that plays a central role in regulating the transcriptional response to plant pathogens. Developing flowers of homozygous npr3 mutants are dramatically more resistant to infection by the pathogenic bacterium Pseudomonas syringae, suggesting a role of NPR3 as a repressor of NPR1-mediated defense response with a novel role in flower development.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>We report here the characterization of a putative NPR3 gene from the tropical tree species Theobroma cacao (TcNPR3). Like in Arabidopsis, TcNPR3 was constitutively expressed across a wide range of tissue types and developmental stages but with some differences in relative levels compared to Arabidopsis. To test the function of TcNPR3, we performed transgenic complementation analysis by introducing a constitutively expressing putative TcNPR3 transgene into an Arabidopsis npr3 mutant. TcNPR3 expressing Arabidopsis plants were partially restored to the WT pathogen phenotype (immature flowers susceptible to bacterial infection). To test TcNPR3 function directly in cacao tissues, a synthetic microRNA targeting TcNPR3 mRNA was transiently expressed in cacao leaves using an Agrobacterium-infiltration method. TcNPR3 knock down leaf tissues were dramatically more resistance to infection with Phytophthora capsici in a leaf bioassay, showing smaller lesion sizes and reduced pathogen replication.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>We conclude that TcNPR3 functions similar to the Arabidopsis NPR3 gene in the regulation of the cacao defense response. Since TcNPR3 did not show a perfect complementation of the Arabidopsis NPR3 mutation, the possibility remains that other functions of TcNPR3 remain to be found. This novel knowledge can contribute to the breeding of resistant cacao varieties against pathogens through molecular markers based approaches or biotechnological strategies.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24314063</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>08</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<PubDate>
<Year>2013</Year>
<Month>Dec</Month>
<Day>06</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>TcNPR3 from Theobroma cacao functions as a repressor of the pathogen defense response.</ArticleTitle>
<Pagination>
<MedlinePgn>204</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2229-13-204</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Arabidopsis thaliana (Arabidopsis) NON-EXPRESSOR OF PR1 (NPR1) is a transcription coactivator that plays a central role in regulating the transcriptional response to plant pathogens. Developing flowers of homozygous npr3 mutants are dramatically more resistant to infection by the pathogenic bacterium Pseudomonas syringae, suggesting a role of NPR3 as a repressor of NPR1-mediated defense response with a novel role in flower development.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">We report here the characterization of a putative NPR3 gene from the tropical tree species Theobroma cacao (TcNPR3). Like in Arabidopsis, TcNPR3 was constitutively expressed across a wide range of tissue types and developmental stages but with some differences in relative levels compared to Arabidopsis. To test the function of TcNPR3, we performed transgenic complementation analysis by introducing a constitutively expressing putative TcNPR3 transgene into an Arabidopsis npr3 mutant. TcNPR3 expressing Arabidopsis plants were partially restored to the WT pathogen phenotype (immature flowers susceptible to bacterial infection). To test TcNPR3 function directly in cacao tissues, a synthetic microRNA targeting TcNPR3 mRNA was transiently expressed in cacao leaves using an Agrobacterium-infiltration method. TcNPR3 knock down leaf tissues were dramatically more resistance to infection with Phytophthora capsici in a leaf bioassay, showing smaller lesion sizes and reduced pathogen replication.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">We conclude that TcNPR3 functions similar to the Arabidopsis NPR3 gene in the regulation of the cacao defense response. Since TcNPR3 did not show a perfect complementation of the Arabidopsis NPR3 mutation, the possibility remains that other functions of TcNPR3 remain to be found. This novel knowledge can contribute to the breeding of resistant cacao varieties against pathogens through molecular markers based approaches or biotechnological strategies.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Shi</LastName>
<ForeName>Zi</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Yufan</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Maximova</LastName>
<ForeName>Siela N</ForeName>
<Initials>SN</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Guiltinan</LastName>
<ForeName>Mark J</ForeName>
<Initials>MJ</Initials>
<AffiliationInfo>
<Affiliation>The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA. mjg9@psu.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>12</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D035683">MicroRNAs</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C517740">NPR3 protein, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001681" MajorTopicYN="N">Biological Assay</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002099" MajorTopicYN="N">Cacao</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060467" MajorTopicYN="N">Disease Resistance</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055785" MajorTopicYN="N">Gene Knockdown Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005816" MajorTopicYN="N">Genetic Complementation Test</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D035683" MajorTopicYN="N">MicroRNAs</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009928" MajorTopicYN="N">Organ Specificity</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044224" MajorTopicYN="N">Pseudomonas syringae</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014170" MajorTopicYN="N">Transformation, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>01</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>11</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>12</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>12</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>8</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24314063</ArticleId>
<ArticleId IdType="pii">1471-2229-13-204</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2229-13-204</ArticleId>
<ArticleId IdType="pmc">PMC3878973</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Mol Evol. 2010 Jan;70(1):85-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20033398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 Aug;11(8):1393-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10449575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2002 Aug;5(4):345-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12179969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 1996 Jan;37(1):49-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8720924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Apr 4;103(14):5602-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16565218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Jun;22(6):523-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10886772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2012 Jun 28;1(6):639-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22813739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2001 Aug;4(4):301-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11418339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Dec;16(6):735-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2001 Nov;6(11):520-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11701380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2012 Jan-Feb;104(1):102-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21933926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1994 Dec;6(12):1845-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7866028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2012 Oct;25(10):1350-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22712506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1994 Sep;25(6):989-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7919218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2008 Sep;9(5):577-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19018989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2007 Jul;100(1):129-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17557832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Growth Differ. 1995 Sep;6(9):1193-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8519696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Mar;146(3):839-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18316638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2012 May;13(4):329-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22013895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Aug;11(4):436-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18614393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Feb;53(4):674-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18269576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1999 Aug 6;98(3):329-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10458608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Apr;17(4):1279-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15749762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2004 Oct;7(5):547-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15337097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 1996;34:573-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 1995;47:171-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7550732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 May;18(5):1121-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16531494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2011 Feb;43(2):101-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21186351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Nov;33(11):1911-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20561252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1997 Jan 10;88(1):57-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9019406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2001 Nov;11(11):1952-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11691860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2011 Jan;12(1):73-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21118350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008;9:512</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18973681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):4223-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17360504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sheng Wu Gong Cheng Xue Bao. 2005 Jul;21(4):511-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16176083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2004 Nov;23(6):404-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15340758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Jun 14;486(7402):228-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22699612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008;9:548</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19019209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2005;6(10):R82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16207353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Dec;48(5):647-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17076807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Dec;18(12):3670-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17172357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Mol Res. 2010;9(3):1279-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20623454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Nov;18(11):3289-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17114354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Nov;15(11):2647-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14576289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2001 May;46(2):143-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11442055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Dec 26;45(51):15168-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17176038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Jun;23(6):2064-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21653195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2006 Sep;224(4):740-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16362326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2003 Jun;21(9):872-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12789505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010;10:248</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21078185</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Pennsylvanie</li>
</region>
<settlement>
<li>University Park (Pennsylvanie)</li>
</settlement>
<orgName>
<li>Université d'État de Pennsylvanie</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Maximova, Siela N" sort="Maximova, Siela N" uniqKey="Maximova S" first="Siela N" last="Maximova">Siela N. Maximova</name>
<name sortKey="Shi, Zi" sort="Shi, Zi" uniqKey="Shi Z" first="Zi" last="Shi">Zi Shi</name>
<name sortKey="Zhang, Yufan" sort="Zhang, Yufan" uniqKey="Zhang Y" first="Yufan" last="Zhang">Yufan Zhang</name>
</noCountry>
<country name="États-Unis">
<region name="Pennsylvanie">
<name sortKey="Guiltinan, Mark J" sort="Guiltinan, Mark J" uniqKey="Guiltinan M" first="Mark J" last="Guiltinan">Mark J. Guiltinan</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001209 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001209 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24314063
   |texte=   TcNPR3 from Theobroma cacao functions as a repressor of the pathogen defense response.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24314063" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024